Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 110

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2023-014, 118 Pages, 2024/02

JAEA-Data-Code-2023-014.pdf:4.77MB
JAEA-Data-Code-2023-014-appendix(CD-ROM).zip:249.03MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydro-chemical monitoring from boreholes and forth at and around the MIU conducted in FY2022. In addition, unreported hydro-chemical monitoring data from the boreholes and forth at the MIU conducted in FY2021 were also compiled.

JAEA Reports

Demonstration of the groundwater observation network system in backfilled underground facility

Murakami, Hiroaki; Takeuchi, Ryuji; Iwatsuki, Teruki

JAEA-Technology 2022-022, 34 Pages, 2022/10

JAEA-Technology-2022-022.pdf:3.47MB

Japan Atomic Energy Agency (JAEA) has been conducting the hydro-pressure and hydrochemical monitoring for more than two decades to understand the hydrochemical disturbance due to the excavation of tunnels at Mizunami Underground Research Laboratory (MIU). To understand the environmental influence due to the backfilling of research tunnels that started in 2019, environmental monitoring of groundwater has been performed and recovery status of groundwater is being confirmed. In order to observe the deep-groundwater environment from the ground, the groundwater pressure monitoring and sampling, which have been performed in the research tunnel, are to be performed from the ground. However, backfilling of a large-scale underground facilities such as MIU is globally unprecedented, thus it was necessary to develop a new observation system. Accordingly, we developed a new observation network to observe the environment around the research tunnels of the MIU. This system enables monitoring of groundwater pressure and water sampling of the backfilled tunnel from the ground while utilizing the existing-monitoring system installed in the tunnels. Accordingly, we demonstrated its technology through the environmental monitoring of groundwater. The results of the environmental monitoring and the existing groundwater data of MIU indicate that this system is able to monitor the groundwater environment in the backfilled tunnels.

Journal Articles

Catalog of gamma-ray glows during four winter seasons in Japan

Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.

Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12

Journal Articles

Gamma-ray observations at the coastal area of Japan Sea in winter seasons

Tsuchiya, Harufumi; Enoto, Teruaki*; Wada, Yuki*; Furuta, Yoshihiro; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Umemoto, Daigo*; Makishima, Kazuo*; GROWTH Collaboration*

Proceedings of Science (Internet), 358, p.1163_1 - 1163_6, 2021/07

Journal Articles

Time-resolved observation of structure change in real time by using X-ray absorption fine structure spectroscopy with dispersive optics

Matsumura, Daiju; Kato, Kazuo*

Hoshako, 34(1), p.3 - 11, 2021/01

no abstracts in English

JAEA Reports

Study of groundwater sampling casing for monitoring device

Okihara, Mitsunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki

JAEA-Technology 2019-021, 77 Pages, 2020/03

JAEA-Technology-2019-021.pdf:5.33MB

One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.

Journal Articles

Result of seismic motion observation from ground surface to 500m depth at Mizunami Underground Research Laboratory and its detailed analysis

Matsui, Hiroya; Watanabe, Kazuhiko*; Mikake, Shinichiro; Niimi, Katsuyuki*; Kobayashi, Shinji*; Toguri, Satohito*

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.293 - 298, 2020/01

Japan Atomic Energy Agency has been observed seismic motions induced by earthquakes, at ground surface, galleries at 100m, 300m and 500m depth of Mizunami underground research laboratory for over 10 years. The results suggested that the amplitude of the seismic motion decreases with depth as the previous study on crystalline rock at Kamaishi mine indicated. Detailed analysis on the observed seismic motions shows that the Fourier amplitude and the phase difference of the earthquake occurred near epicenter correspond with the one calculated by one-dimensional multiple reflection theory.

Journal Articles

Downward terrestrial gamma-ray flash observed in a winter thunderstorm

Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Matsumoto, Takahiro*; Makishima, Kazuo*; Tsuchiya, Harufumi

Physical Review Letters, 123(6), p.061103_1 - 061103_6, 2019/08

AA2018-0706.pdf:0.79MB

 Times Cited Count:33 Percentile:87.96(Physics, Multidisciplinary)

Journal Articles

Support for the development of remote sensing robotic system using a water tank installed in the Naraha Remote Technology Development Center

Nishimura, Akihiko; Yoshida, Minoru*; Yamada, Tomonori; Arakawa, Ryoki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 3 Pages, 2019/05

JAEA support the development of remote sensing robotic system in the Naraha Remote Technology Development Center. A water tank is used as a mockup facility of nuclear reactor vessel. A compact seismic vibrometer based on an optical fiber interferometer is applied. A specially designed robotic system is also tested for installing the sensor unit. The experiment is prepared to clarify the transfer function of the water tank, using vibration noise of ground motion.

JAEA Reports

Annual data compilation of water balance observation in the Regional Hydrogeological Study Project (RHS Project); For the fiscal year 2014

Ueno, Tetsuro; Takeuchi, Ryuji

JAEA-Data/Code 2015-032, 30 Pages, 2016/03

JAEA-Data-Code-2015-032.pdf:9.65MB
JAEA-Data-Code-2015-032-appendix(CD-ROM).zip:593.7MB

Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has carried out the subsurface water balance observation in order to estimate groundwater recharge rate for setting the upper boundary conditions on groundwater flow simulation and to obtain data for calibration of hydrogeological model. In the subsurface water balance observations, precipitation data and river flowrate have been observed in the Garaishi River and Hiyoshi River watersheds. The missing or abnormal data in the monitoring data during the fiscal year 2014 were complemented or corrected, and these data were compiled in data set. Because many data were accumulated, these observations were finished in the end of March, 2015.

JAEA Reports

Annual data compilation of water balance observation in the Mizunami Underground Research Laboratory Project (MIU Project); For the fiscal year 2014

Ueno, Tetsuro; Takeuchi, Ryuji

JAEA-Data/Code 2015-031, 61 Pages, 2016/03

JAEA-Data-Code-2015-031.pdf:9.15MB
JAEA-Data-Code-2015-031-1appendix(DVD-ROM).zip:174.29MB
JAEA-Data-Code-2015-031-2-1appendix(DVD-ROM).zip:86.67MB
JAEA-Data-Code-2015-031-2-2appendix(DVD-ROM).zip:268.33MB
JAEA-Data-Code-2015-031-2-3appendix(DVD-ROM).zip:569.4MB
JAEA-Data-Code-2015-031-2-4appendix(DVD-ROM).zip:103.25MB
JAEA-Data-Code-2015-031-2-5appendix(DVD-ROM).zip:0.4MB

Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has carried out the subsurface water balance observation in order to estimate groundwater recharge rate for setting the upper boundary conditions on groundwater flow simulation and to obtain data for calibration of hydrogeological model. In the subsurface water balance observations, meteorogical data, river flow rate, groundwater level and soil moisture have been observed in the Shoma River watershed, the Shoma River model watershed and the MIU Construction Site. After missing or abnormal data in the monitoring data from the fiscal year 2014 were complemented or corrected, the data were compiled in data set. Furthermore the groundwater recharge rates in the Hazama River watershed were calculated using the river flow rate data obtained from the environment survey in the MIU construction work in the fiscal year 2014. Because many data were accumulated, these observations were finished in the end of March, 2015.

JAEA Reports

Long-term pore-pressure-monitoring using deep boreholes in the Horonobe Underground Research Project

Yoshino, Hiromitsu; Kishi, Atsuyasu*; Yokota, Hideharu

JAEA-Data/Code 2015-014, 42 Pages, 2015/09

JAEA-Data-Code-2015-014.pdf:11.38MB
JAEA-Data-Code-2015-014-appendix(CD-ROM).zip:4.26MB

Long-term pore-pressure-monitoring has been performed using HDB-1$$sim$$11 and PB-V01 boreholes in the Horonobe Underground Research Laboratory Project. This report summarizes the results obtained from the starting of monitoring to March 2015.

Journal Articles

Noble gas monitoring at the Takasaki radionuclide station of JAEA; Certification by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization

Yamamoto, Yoichi

Isotope News, (736), p.31 - 33, 2015/08

The Takasaki radionuclide (RN) station for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) has been in operation for monitoring of radioactive noble gases (radioxenon) by the Japan Atomic Energy Agency (JAEA) since 2007, first as a test run prior to receiving the certification. The noble gas system in the station was certified by the CTBT Organization (CTBTO) on December 19, 2014. Monitoring of radioxenon is expected to have a particularly valuable role in detection of an underground nuclear test. The Takasaki RN station detected radioxenon isotopes simultaneously with radioactive concentration exceeding normal background range in April, 2013. This abnormal event was identified as being associated with the nuclear test declared by North Korea in February, 2013. Since the Takasaki RN station is located at the east end of Asia, it is receiving widespread international attention as the station for radionuclides dispersed by the westerlies.

Journal Articles

Real-time-resolved X-ray absorption fine structure spectroscopy for cesium adsorption on some clay minerals

Matsumura, Daiju; Kobayashi, Toru; Miyazaki, Yuji; Okajima, Yuka*; Nishihata, Yasuo; Yaita, Tsuyoshi

Clay Science, 18(4), p.99 - 105, 2014/12

Journal Articles

Consideration of radiolytic behavior in diluted and concentrated systems of seawater for computational simulation of hydrogen generation

Nagaishi, Ryuji; Inoue, Masao; Hino, Ryutaro; Ogawa, Toru

Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 9 Pages, 2014/10

Since seawater has been used as a coolant for reactors and spent fuel pools in broken reactor buildings at Fukushima Daiichi NPS accident, radioactive contaminated water emitted following the accident has contained salt content of seawater at high concentrations, different from that at TMI-2 accident. Radiolysis of seawater leading to hydrogen generation and corrosion has been simulated and reported by several groups. However, the proposed radiolysis models cannot be always applied to water radiolysis at the wide range of salt concentrations present in the NPS, mainly because primary yields of radiolysis products of water and radiation-induced reactions are dependent on the salt concentration. In this study, the radiolytic behavior in diluted and concentrated systems of seawater was considered on the basis of results in steady state and pulse radiolysis experiments, in which the above salt effects were demonstrated from the obtained results.

Journal Articles

Status of research activities for development of CTBT-related technologies in JAERI

Shinohara, Nobuo; Inoue, Yoji; Uchikoshi, Takako*; Oda, Tetsuzo*; Kumata, Masahiro; Kurosawa, Yoshiaki; Hirota, Naoki*; Hokida, Takanori; Nakahara, Yoshinori*; Yamamoto, Yoichi

Dai-25-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, p.51 - 58, 2005/00

The Japan Atomic Energy Research Institute (JAERI) conducts researches and developments related to Comprehensive Nuclear-Test-Ban Treaty (CTBT) on the basis of Japan's pragmatic and progressive efforts toward peaceful use of atomic energy and non-proliferation with the goal of realizing a peaceful and safe world free from nuclear weapons. The Treaty aims for the establishment of a global verification regime comprising an International Monitoring System (IMS) and the JAERI has engaged in the following activities: construction and operation of the radionuclide monitoring stations at Okinawa (RN37) and Takasaki (RN38) and the certified radionuclide laboratory at Tokai (RL11) as specified in Annex 1 of CTBT Protocol, and preparation of the National Data Center at Tokai (JAERI NDC). Research activities of JAERI related to the CTBT verification regime are presented in the paper. The subjects of this presentation are (1) an overview of the CTBT verification regime, (2) construction and operation of RN37, RN38 and RL11, and (3) preparation of the JAERI NDC for radionuclide data.

Journal Articles

JAERI-Tokai radionuclide laboratory in CTBT verfication regime

Shinohara, Nobuo; Yamamoto, Yoichi; Inoue, Yoji; Kumata, Masahiro; Oda, Tetsuzo; Uchikoshi, Takako*; Hokida, Takanori; Hirota, Naoki*; Nakahara, Yoshinori; Usuda, Shigekazu

Dai-23-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, p.45 - 52, 2002/12

no abstracts in English

Journal Articles

Inverse problems in nuclear engineering; Old but new approach for bottleneck removal

Itagaki, Masafumi*; Kurihara, Kenichi

Nihon Genshiryoku Gakkai-Shi, 44(12), p.873 - 878, 2002/12

An inverse problem has been known as a method to identify the cause on the basis of consequent observation and mathematical investigation. In recent years, the advancement of computer technology and numerical algorithms has stimulated this field of methodology. This leads to that an inverse problem is being noted as a new area of apllied physics and engineering. In this review, several inverse problems dealt in the nuclear engineering are presented together with the updated topics on this problem.

Journal Articles

Polarization transfer in the $$^{16}$$O($$p,p'$$) reaction at forward angles and structure of the spin-dipole resonances

Kawabata, Takahiro*; Ishikawa, Takatsugu*; Ito, M.*; Nakamura, M.*; Sakaguchi, Harutaka*; Takeda, H.*; Taki, T.*; Uchida, Makoto*; Yasuda, Yusuke*; Yosoi, Masaru*; et al.

Physical Review C, 65(6), p.064316_1 - 064316_12, 2002/06

 Times Cited Count:20 Percentile:70.04(Physics, Nuclear)

no abstracts in English

JAEA Reports

A Study of structure of base-isolated

; ; Yamazaki, Toshihiko; ; ; Kondo, Toshinari*; *

JNC TN8400 2001-030, 99 Pages, 2002/01

JNC-TN8400-2001-030.pdf:13.24MB

There is a great deal of that we build a Base-Isolated building with the quaternary deposit ground. In an atomic energy institution, a study request is strong. When we build a Base-Isolated building with the quaternary deposit ground, evaluation of earthquake vibration of a vertical direction is an important problem. In an atomic energy institution, we design it by big earthquake load, and therefore examination is necessary. And, in this study, we do examination to build a Base-Isolated building with the quaternary deposit ground, we report it about an evaluation method of a design. Furthermore, we report that we estimated pipe laying and machinery to put in a building of Base-lsolated.

110 (Records 1-20 displayed on this page)